97 research outputs found

    An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width

    Full text link
    We provide a doubly exponential upper bound in pp on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F\mathbb{F} of linear rank-width at most pp. As a corollary, we obtain a doubly exponential upper bound in pp on the size of forbidden vertex-minors for graphs of linear rank-width at most pp. This solves an open question raised by Jeong, Kwon, and Oum [Excluded vertex-minors for graphs of linear rank-width at most kk. European J. Combin., 41:242--257, 2014]. We also give a doubly exponential upper bound in pp on the size of forbidden minors for matroids representable over a fixed finite field of path-width at most pp. Our basic tool is the pseudo-minor order used by Lagergren [Upper Bounds on the Size of Obstructions and Interwines, Journal of Combinatorial Theory Series B, 73:7--40, 1998] to bound the size of forbidden graph minors for bounded path-width. To adapt this notion into linear rank-width, it is necessary to well define partial pieces of graphs and merging operations that fit to pivot-minors. Using the algebraic operations introduced by Courcelle and Kant\'e, and then extended to (skew-)symmetric matrices by Kant\'e and Rao, we define boundaried ss-labelled graphs and prove similar structure theorems for pivot-minor and linear rank-width.Comment: 28 pages, 1 figur

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if GΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    A polynomial kernel for Block Graph Deletion

    Get PDF
    In the Block Graph Deletion problem, we are given a graph GG on nn vertices and a positive integer kk, and the objective is to check whether it is possible to delete at most kk vertices from GG to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we obtain a kernel with O(k6)\mathcal{O}(k^{6}) vertices for the Block Graph Deletion problem. This is a first step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and its analysis, we introduce the notion of `complete degree' of a vertex. We believe that the underlying idea can be potentially applied to other problems. We also prove that the Block Graph Deletion problem can be solved in time 10knO(1)10^{k}\cdot n^{\mathcal{O}(1)}.Comment: 22 pages, 2 figures, An extended abstract appeared in IPEC201

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure
    corecore